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bstract

We use the method of multiple scales to elucidate dynamics associated with early and delayed ejection of ions in mass selective ejection
xperiments in Paul traps. We develop a slow flow equation to approximate the solution of a weakly nonlinear Mathieu equation to describe ion
ynamics in the neighborhood of the stability boundary of ideal traps (where the Mathieu parameter qz = q∗

z = 0.908046). The method of multiple
cales enables us to incorporate higher order multipoles, extend computations to higher orders, and generate phase portraits through which we
iew early and delayed ejection.

Our use of the method of multiple scales is atypical in two ways. First, because we look at boundary ejection, the solution to the unperturbed
quation involves linearly growing terms, requiring some care in identification and elimination of secular terms. Second, due to analytical difficulties,
e make additional harmonic balance approximations within the formal implementation of the method.
For positive even multipoles in the ion trapping field, in the stable region of trap operation, the phase portrait obtained from the slow flow consists

f three fixed points, two of which are saddles and the third is a center. As the qz value of an ion approaches q∗
z , the saddles approach each other,

nd a point is reached where all nonzero solutions are unbounded, leading to an observation of early ejection.
The phase portraits for negative even multipoles and odd multipoles of either sign are qualitatively similar to each other and display bounded

olutions even for qz > q∗
z , resulting in the observation of delayed ejection associated with a more gentle increase in ion motion amplitudes, a
echanism different from the case of the positive even multipoles.
2006 Elsevier B.V. All rights reserved.
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. Introduction

In this paper we study dynamics associated with early and
elayed ejection observed in Paul traps operated in mass se-
ective ejection mode. In particular, we study differences in the
ynamics arising from higher order field superpositions of small
agnitudes. The method of multiple scales is used to derive an

pproximate analytical expression which captures the slow vari-
tion in the amplitude of ion motion near the stability boundary.

Paul trap mass spectrometers consist of a three electrode mass

nalyzer with two end cap electrodes and a central ring elec-
rode, all having hyperboloid geometry [1,2]. Ions of analyte
as, formed in situ by electron impact ionization, are trapped
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ithin the cavity by a trapping field formed by d.c. and rf po-
entials applied between the ring and end cap electrodes [1,3].
he motion of ions within an ideal trap is governed by two un-
oupled, linear Mathieu equations [1,4] given by

d2u

dτ2 + (au + 2qu cos 2τ)u = 0, (1)

here u represents either the r (radial) or z (axial) direction of
otion, τ = Ωt/2, where in turn Ω is the angular frequency of

he rf drive applied to the central ring electrode, and t is time. In
q. (1), au and qu are Mathieu parameters which determine ion
tability within the trap.

In mass selective ejection experiments, the trap is operated
long the az = 0 axis (by setting the d.c. potential to 0) [5] of the
athieu stability plot [3] and ions are destabilized from the trap
y ramping the rf amplitude to cause the ion’s qz value to cross
he stability boundary at or near q∗

z = 0.908046. In practical
raps it is known that small field inhomogeneities, which arise
ue to geometric imperfections and experimental constraints,

mailto:nrbabu@isu.iisc.ernet.in
mailto:amol@mecheng.iisc.ernet.in
mailto:anindya100@gmail.com
mailto:agmenon@isu.iisc.ernet.in
dx.doi.org/10.1016/j.ijms.2006.09.009


al of

c
t
l
v
t
a
t
t
p
(
t
a
g
a
a
t
I
d
o
c
a
s
c

l
i
t
t
b
a
t
i
d
p
3
w
e
C
m
m
i
f
a
t
a
h
n
t
I
M

b
p
fi
a
t
s

s
s
a
s
e
t
t

c
(
o
b
e
m
a
s
w
h
d
t
c
fi
v
s
i
c
c

M
p
o
r
t

2

fi
i

φ

w
s
p
e

φ

w
a
m
h

N. Rajanbabu et al. / International Journ

ause ions to get ejected at smaller or larger qz values (compared
o q∗

z = 0.908046) resulting in the observation of early or de-
ayed ejection, respectively. On account of this, it was observed
ery early during commercialization of the Paul trap mass spec-
rometer that traps were prone to errors in mass assignments [6],
problem that was subsequently overcome by increasing the dis-

ance between the two end cap electrodes. Wells et al. [7] showed
hat these mass shifts arise on account of the interplay of two
rimary factors which include (1) presence of nonlinear fields
caused by holes in the end caps as well as truncation of the elec-
rodes) within the trap cavity which tends to delay ion ejection
nd (2) elastic and inelastic collisions of the ions with the bath
as which tend to shorten this delay. A recent report by Plass et
l. [8] has provided further understanding on mass shifts through
study of its dependence on trap geometry, buffer gas, rf ampli-

ude scan rate, ion mass and the chemical structure of the ion.
n the context of the influence of field inhomogeneities causing
elayed ion ejection Franzen and coworkers [9–12], in a series
f numerical studies, showed that positive octopole and dode-
apole superpositions cause ions to come out early (at qz < q∗

z )
nd the presence of negative octopole and dodecapole superpo-
itions or hexapole and decapole superpositions of either sign
ause delayed ejection of ions (at qz > q∗

z ).
Understanding the dynamics associated with early and de-

ayed ejection caused by field nonlinearities (inhomogeneities)
s important in the context of newer trap geometries being inves-
igated for their use as mass spectrometers. The 2D (linear) Paul
rap, which consists of a four-rod assembly mass analyzer, has
een used in both mass selective instability mode [13] as well
s for resonance excitation experiments [14]. Modified geome-
ries of 2D Paul traps with added octopole fields have also been
nvestigated by Michaud et al. [15] and Collings [16]. Another
irection of investigation concerns traps that have greatly sim-
lified geometries compared to the hyperboloid geometry of the
D Paul trap. An example of this is the cylindrical trap [17,18]
hich consists of a cylindrical ring electrode and two flat end cap

lectrodes, and has scope for MEMS scale fabrication [19,20].
urrently these instruments are being used as fieldable instru-
ents [21] but we hope that better appreciation of the effects of
ultipole superpositions on boundary ejection of ions will help

n developing miniaturized mass analyzers even for high per-
ormance applications. The common feature for all these mass
nalyzers is that the governing equations of ion motion within
he trap cavity are Mathieu equations. Further, in these traps, on
ccount of non-ideal geometries and experimental constraints,
igher order multipole fields get superposed on the predomi-
antly linear field. This results in the equations of motion taking
he form of (weakly) nonlinear and coupled Mathieu equations.
n this paper, however, we consider a single, weakly nonlinear

athieu equation.
The main problem in studying ion behavior in the neigh-

orhood of the Mathieu stability boundary is that it is not
ossible to derive a closed form solution for ion motion when

eld inhomogeneities are present. Sudakov [22] has presented
n insightful analysis of the slow variation in amplitude of
he ion motion, which he calls the “beat” envelope, near the
tability boundary. He showed that in case of positive octopole
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uperposition, there exists an effective potential well in the
table region. The width and depth of this well decreases as qz

pproaches the stability boundary. In case of negative octopole
uperposition and hexapole superposition of either sign, the
xistence of a double well potential in the unstable region of
he Mathieu stability plot causes delayed ejection of ions from
he trap.

In this paper we present a detailed and systematic analyti-
al study of ion ejection near the nominal stability boundary
q∗
z = 0.908046) for practical Paul traps. We go beyond the work

f Sudakov [22] in three ways. First, we adopt a formal pertur-
ation method, the method of multiple scales (MMS), which has
nabled us to proceed up to the fourth order (Appendix A). This
ay be useful when the weights of multipole superpositions

re relatively larger. However, we use only the second order
low flow for obtaining the phase portraits in this paper, since
e have assumed weak multipole superpositions. Secondly, we
ave incorporated higher order multipoles (hexapole, octopole,
ecapole and dodecapole superpositions) in the governing equa-
ion. With this, we obtain new insights into the dynamics asso-
iated with these multipole superpositions within the trapping
eld. Finally, we use phase portraits to provide an alternative
iew of the slow modulation dynamics as the ions approach the
tability boundary, to understand early and delayed ejection of
ons. Our results match Sudakov [22] up to second order, ex-
ept for an apparent error in one of his terms, which we have
orrected.

As a technical matter, we mention that the application of the
MS at the stability boundary involves somewhat greater com-

lications than the application of the MMS, or the related method
f averaging [23], to resonant points inside the nominal stability
egion because in the latter case the unperturbed equation has
wo linearly independent periodic solutions.

. Equation of motion

In the literature, the potential distribution inside a trap with
eld inhomogeneities in terms of spherical coordinates (ρ, θ, ϕ)

s given by [24]

(ρ, θ, ϕ) = φ0

∞∑
n=0

An

ρn

rn
0

Pn(cos θ), (2)

here Pn is the Legendre polynomial of order n, An the dimen-
ionless weight factor for the nth multipole term, ρ the radial
osition and r0 is chosen to be the radius of the central ring
lectrode in our study. φ0 is given by

0 = U + V cos Ωt, (3)

here U is the applied d.c. potential, and V is the amplitude of the
pplied rf potential. In this study we consider four higher order
ultipoles which include A3, A4, A5 and A6, corresponding to

exapole, octopole, decapole and dodecapole, respectively, in

q. (2). We use the notation and sign convention of Beaty [24]

or representing the higher order multipoles. Since our focus is
n axial (z) instability, we set r ≡ 0. Following the procedure
dopted by Sevugarajan and Menon [25] and Abraham et al.
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26], the uncoupled equation of motion of trapped ions in the
xial (z) direction in an experimental trap reduces to a nonlinear
athieu equation:

d2x

dτ2 + (az + 2qz cos 2τ)

×
(

x + 3h

2
x2 + 2fx3 + 5d

2
x4 + 3k x5

)
= 0, (4)

here x = z/r0 is the axial position of the ion normalized
ith respect to r0, τ = Ωt/2, and h(= A3/A2), f (= A4/A2),
(= A5/A2) and k(= A6/A2) are the proportion of hexapole,
ctopole, decapole and dodecapole nonlinearity, respectively, to
he quadrupole superposition, A2. Also, az and qz are Mathieu
arameters for the nonlinear trap and are given by

z = 8eA2U

mr2
0Ω

2
; qz = 4eA2V

mr2
0Ω

2
, (5)

here e/m is the charge to mass ratio of the ion.
A point that needs mention is related to the usage of the

escriptors “positive” and “negative” for multipole superposi-
ions. In the mass spectrometry literature, the sign is implicitly
ttributed to the specific multipole by assuming that the sign of
he quadrupole superposition is positive. In actual practice, when
he end cap electrodes of the ion trap are grounded as is usu-
lly done in mass selective boundary ejection experiments, the
eight of the quadrupole superposition, A2 is negative. Conse-
uently, “positive” multipole superposition implies that An and
2 have the same sign and “negative” multipole superposition

mplies An and A2 have opposite signs.
In mass selective ejection experiments, where only the rf volt-

ge is applied, the equation of motion (Eq. (4)) takes the form:

d2x

dτ2 + 2qz cos 2τ

(
x + 3h

2
x2 + 2fx3 + 5d

2
x4 + 3k x5

)
= 0,

(6)

ince az is set to 0. Ion destabilization occurs at the stability
oundary (corresponding to βz = 1, where βz is related to the
athieu parameters az and qz) in the Mathieu stability plot [27].

n our discussion the qz value at the nominal point of destabi-
ization in ideal traps will be referred to as q∗

z , which happens to
e 0.908046, as shown below.

In the method of multiple scales adopted here, we need to
rder the nonlinearities. The following ordering scheme has been

dopted:

= 2
√

εh̄

3
, f = εf̄

2
, d = 2

√
εd̄

5
, k = εk̄

3
, (7)

S
c
w

∂2X0

∂T 2
0

+ 2q∗
z cos(2T0)X0 + √

ε

[
∂2X1

∂T 2
0

+ 2q∗
z cos(2T0)

(
X1 + h̄X2

0

+ ε

[
∂2X2

∂T 2
0

+∂2X0

∂T 2
1

+2
∂2X0

∂T0∂T2
+ 2

∂2X1

∂T0∂T1
+ 2 cos(2T0)

(
q∗
zX

+O(ε
√

ε) = 0.
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here h̄, f̄ , d̄, k̄ and ε will determine the strengths of the non-
inearities. Note that all even superpositions have been ordered
s ε and odd superpositions as

√
ε. Moreover, h̄, f̄ , d̄ and k̄

re of O(1), with the “smallness” of these terms governed by
< ε � 1. Further, to study the dynamics near q∗

z , we intro-
uce a detuning parameter Δ and write

z = q∗
z + εΔ. (8)

Thus by assigning negative and positive values to Δ, we can
tudy the dynamics associated with early and delayed ejection,
espectively.

Substituting Eqs. (7) and (8) into Eq. (6), the governing equa-
ion of our system takes the form:

d2x

dτ2 + 2(q∗
z + εΔ)

× cos 2τ
(
x + √

εh̄x2 + εf̄ x3+ √
εd̄x4+ εk̄x5

)
= 0. (9)

. Analysis using multiple scales

In the method of multiple scales [28–31], we assume that the
olution to the original equation can be represented as a function
f multiple time scales. Here, we choose T0 = τ, T1 = √

ετ,
2 = ετ, . . .. T0 is the fast (usual) time and T1, T2, . . . are the
low times. This particular choice is justified in Appendix B.
he solution x(τ) to Eq. (9) is sought in the form:

(τ) = X(T0, T1, T2, . . .). (10)

Further, X is expanded as

(T0, T1, T2, . . .)

= X0(T0, T1, T2, . . .) + √
εX1(T0, T1, T2, . . .)

+ εX2(T0, T1, T2, . . .) + ε
√

εX3(T0, T1, T2, . . .) + O(ε2).

(11)

The derivatives with respect to τ are:

d(.)

dτ
= ∂(.)

∂T0
+ √

ε
∂(.)

∂T1
+ ε

∂(.)

∂T2
+ O(ε

√
ε), (12)

d2(.)

dτ2 = ∂2(.)

∂T 2
0

+ 2
√

ε
∂2(.)

∂T0∂T1

+ ε

(
∂2(.)

∂T 2
1

+ 2
∂2(.)

∂T0∂T2

)
+ O(ε

√
ε). (13)

ubstituting Eqs. (11) through (13) in Eq. (9), expanding and
ollecting terms using a symbolic algebra package (MAPLE),
e obtain:

+ d̄X4
0

)
+ 2

∂2X0

∂T0∂T1

]
]

2 + 2q∗
z h̄X0X1 + q∗

z f̄X3
0 + 2q∗

z d̄X3
0X1 + q∗

z k̄X
5
0 + �X0

)

(14)
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Table 1
Values of ak’s and bk’s

k ak bk

0 1.00000000 . . . −1.13521939 . . .

1 0.10126539 . . . −0.18286643 . . .

2 0.00368062 . . . −0.00812047 . . .

3 0.00006822 . . . −0.00017002 . . .

4 0.00000076 . . . −0.00000208 . . .
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5 0.57401517 × 10−8 −0.16624533 × 10−7

6 0.30842821 × 10−10 −0.94071713 × 10−10

As is usual for the MMS, we will solve the above sequen-
ially for different orders (powers of ε). Indeterminacy in the
olution at each stage, as usual, will be eliminated by insisting
n a bounded solution at the next stage (a process called removal
f secular terms). However, the form of the secular terms, and
ur process of identifying them, is somewhat unusual and de-
cribed in detail below. Note that, for our higher order calcula-
ions, we retained more terms in the above expansion, these are
ot presented here for the sake of brevity.

.1. Solution at O(1)

From Eq. (14) at O(1), we have the linear Mathieu equation:

∂2X0

∂T 2
0

+ 2q∗
z cos(2T0)X0 = 0. (15)

Since this equation corresponds to the ion motion at the
oundary (qz = q∗

z ), the solution consists of a 2π-periodic func-
ion and a linearly growing function [32].

Let the periodic function be ξ1. It can be written as a cosine
eries given by

1 =
M∑

k=0

ak cos((2k + 1)T0), (16)

here M = ∞ for the exact solution, but we will truncate the
eries at a suitably large value of M. In our computation, we set

= 12.
To obtain (or rather, verify) the numerical value of q∗

z , we
ubstitute the truncated cosine series into Eq. (15). Collecting the
oefficients of the harmonics retained in the approximation (Eq.
16)) and equating them to 0, we get M + 1 simultaneous linear
quations in unknown ak’s. For nontrivial solutions to exist, the
eterminant of the coefficient matrix, which is a polynomial in
∗
z , must be 0. When this equation is solved, the smallest root
ives q∗

z = 0.908046. In what follows, we take1 q∗
z = 0.908046.

In order to obtain the ak’s (and thus ξ1), we substitute
∗
z = 0.908046 into the M + 1 linear equations obtained earlier.
ince the M + 1 equations are linearly dependent, we choose

0 = 1 for convenience, drop the equation corresponding to the
oefficient of cos T0, and use the remaining M equations to find
he remaining ak’s (see Table 1).

1 More digits were retained in our calculations using MAPLE. For verification
y interested readers, q∗

z = 0.9080463337 . . .
Mass Spectrometry 261 (2007) 170–182 173

The linearly growing part of the solution of Eq. (15) has the
orm ξ2 + T0 ξ1 [32], where ξ2 is 2π-periodic. When this form
s inserted into Eq. (15), we get the differential equation for
2 as

¨2 + 2q∗
z cos(2T0)ξ2 = −2ξ̇1. (17)

ξ2 can be approximated by a truncated Fourier series as

2 =
M∑

k=0

bk sin((2k + 1)T0), (18)

here, again, we use M = 12. Substituting this into the differ-
ntial equation for ξ2 and collecting terms, we get M + 1 linear
imultaneous equations which can be directly solved to obtain
he bk’s (Table 1). The ak’s and bk’s progressively decrease in

agnitude and their numerical values for k > 6 are not presented
ere, although M = 12 and many digits of precision were used
n our MAPLE calculation. It is clear that choosing M = 12 is

ore than enough for practical purposes.
The general solution to Eq. (15) can then be written as

0 = A(T1, T2)ξ1(T0) + B(T1, T2)(ξ2(T0) + T0ξ1(T0)), (19)

here A and B are arbitrary functions of T1 and T2.
We now set B ≡ 0 which eliminates the rapidly growing part

n Eq. (19). This may initially seem somewhat arbitrary. Note,
owever, that by choosing B ≡ 0, we can obtain one solution
nd numerics will show that the solution so obtained is useful.
or a similar example of setting the coefficient of a rapidly in-
reasing term to 0 and some relevant discussion, see Chatterjee
nd Chatterjee [33]. Thus the solution to the O(1) equation is
aken as

0 = A(T1, T2)ξ1(T0). (20)

It may be noted that ξ2 does not appear in X0 in Eq. (20).
owever, ξ2 will be required in the subsequent analysis.

.2. Solution at O(
√

ε)

Before we go to O(
√

ε), consider:

¨ + P(t)ẋ + Q(t)x = R(t), (21)

here P(t), Q(t), R(t) are bounded, periodic functions with pe-
iod T. Assume that the complementary solution to Eq. (21) is
linear combination of h1 and h2 + α t h1 where h1 and h2 are
-periodic and α is some nonzero constant. Das and Chatterjee
34] show that secular terms in the solution to Eq. (21) do not
row in amplitude faster than t2. Moreover, under arbitrary but
eriodic forcing, secular terms in the particular solution are a
inear combination of t(2h2 + α th1) and th1. We will use these
esults below.

We now return to Eq. (14) at O(
√

ε), and we have:
∂2X1

∂T 2
0

+ 2 q∗
z cos(2T0)X1

= −2
∂2X0

∂T0∂T1
− 2 q∗

z cos(2T0) (h̄X2
0 + d̄X4

0). (22)
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equal to 0, we obtain:
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We note the similarity between Eqs. (22) and (21) by identi-
ying:

≡ X1, P(t) ≡ 0, Q(t) ≡ 2q∗
z cos(2T0),

(t) ≡ −2
∂2X0

∂T0∂T1
− 2 q∗

z cos(2T0) (h̄X2
0 + d̄X4

0).

The complementary solution to Eq. (22) is a linear combina-
ion of ξ1 and ξ2 + T0 ξ1 where ξ1 and ξ2 are given by Eqs. (16)
nd (18) and are 2π-periodic. Therefore, secular terms in the
articular solution are a linear combination of T0 (2ξ2 + T0 ξ1)
α = 1 in our case) and T0 ξ1. The general solution to Eq. (22)
an be written as [34]

1 = c1ξ1 + c2(ξ2 + T0ξ1) + c3T0 ξ1

+ c4T0 (2ξ2 + T0 ξ1) + �(T0), (23)

here c1 through c4 are constants and � is 2π-periodic in T0.
oreover, c1 and c2 are arbitrary, being part of the complemen-

ary solution. One linearly growing part of the particular solution
an be nullified by a linearly growing part of the complemen-
ary solution (by choosing c2 = −c3). Although c2 is thereby
xed, c1 is still arbitrary. We now choose c1 such that it nulli-
es the coefficient of cos T0 in �(T0). By these arguments and
implifications:

1 = c4T0 (2 ξ2 + T0 ξ1) + �(T0), (24)

here �(T0) is 2π-periodic, has absorbed c1 ξ1 − c3 ξ2 and has
o cos T0 term, i.e.,

1 = C2N+1 +
N∑

k=2

Ck cos(kT0) +
N∑

k=1

Ck+N sin(kT0)

+ C2N+2 T0 (2ξ2 + T0ξ1), (25)

here N is some positive integer (here we have taken N = 12)
nd the Ck’s are coefficients to be determined. Note that cos T0
as been left out above.

Since ξ1 and ξ2 are approximate and the periodic part of X1
s also approximate, the form of X1 satisfies Eq. (22) only ap-
roximately. Therefore, after substituting Eqs. (25) into (22),
he left hand side will not be exactly equal to the right hand
ide. Bringing all terms to the left hand side, we obtain a
onzero residual. The unknown Ck’s are determined by car-
ying out the Galerkin projection procedure used in a related
ontext by Das and Chatterjee [34]. In this procedure the resid-
al is separately multiplied by each basis function in the as-
umed form of the general solution (right hand side of Eq. (25)),
amely

, T0 (2ξ2 + T0ξ1), sin T0, sin(2T0), cos(2T0), . . . ,

nd then each such product is integrated over one period (from
to 2π). Setting the integrals thus obtained to 0, we obtain

N + 1 linear equations in the unknown coefficients Ck’s. We

olve for these coefficients and substitute them in Eq. (25) to
btain X1.

A key point is that coefficient C2N+2 must be set to 0 to avoid
he secular terms and this, as is usual in the MMS, enables us to

−
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btain the slow flow. From MAPLE we obtain, at O(
√

ε):

2N+2 = 0.12873832 × 10−9 h̄ A2 − 0.30186541

× 10−7 d̄ A4 − 0.39256924 × 10−9 ∂A

∂T1
. (26)

We note that the numerical coefficients are very small. We
eed to determine if they are actually numerically corrupted
ersions of exactly 0, i.e., if they should be set to 0. Noting that,
rom the Galerkin procedure, we have simultaneously obtained:

2 = −0.67189535 d̄ A4 − 0.60163836 h̄ A2, (27)

nd

4 = 0.0045506 d̄ A4 − 0.006558 h̄ A2, (28)

hich involve much larger numerical coefficients, we conclude
hat C2N+2 is actually 0. Thus, we take C2N+2 = 0, and obtain
o useful information at this order. We must proceed to a higher
rder calculation.

There are some technical issues in doing such higher order
alculations, regarding the asymptotic validity of the method,
ut good approximations will nevertheless be obtained. The
echnical issues related to asymptotic validity are identical to
hose discussed in Nandakumar and Chatterjee [35] for aver-
ging, and are not discussed here. The solution X1 is given in
ppendix C.

.3. Solution at O(ε)

We now proceed to O(ε) which will provide useful informa-
ion about the evolution of the amplitude A of the solution. From
q. (14), at O(ε), we have

∂2X2

∂T 2
0

+ 2 q∗
z cos(2T0)X2

= −∂2X0

∂T 2
1

− 2
∂2X0

∂T0∂T2
− 2

∂2X1

∂T0∂T1
− 2 cos(2T0)X0

− 2 cos(2T0) × q∗
z (2h̄ X0X1 + f̄ X3

0

+ 2q∗
z d̄X3

0X1 + q∗
z k̄X

5
0). (29)

Eq. (29) also fits the form of Eq. (21). As was done for X1 at
(
√

ε), here we take

2 = D2N+1 +
N∑

k=2

Dk cos(kT0) +
N∑

k=1

Dk+N sin(kT0)

+ D2N+2 T0 (2ξ2 + T0ξ1), (30)

here N = 12 as earlier, and Dk’s are coefficients to be deter-
ined. We follow the Galerkin projection procedure again (as

escribed earlier) to solve for the unknown Dk’s. Setting D2N+2
1.9438h̄2A3 + 0.44483f̄A3 − 4.7213d̄
2
A7 + 0.48561k̄A5

− 6.4286h̄d̄A5 + 0.43865�A − 0.50000
∂2A

∂T1
2 = 0. (31)
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capole while Fig. 3(b) is for negative dodecapole. From these
plots, it can be observed that the slow flow adequately repre-
sents the slow temporal variation in amplitude of the system in
the neighborhood of the stability boundary.
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From Eq. (13), we have

¨ = d2A

dτ2 = ∂2A

∂T 2
0

+ 2
√

ε
∂2A

∂T0∂T1

+ ε

(
∂2A

∂T 2
1

+ 2
∂2A

∂T0∂T2

)
+ O(ε

√
ε). (32)

Since amplitude A is not a function of the fast variable T0,
e have

¨ = ε
∂2A

∂T 2
1

+ O(ε
√

ε), (33)

iving the required slow flow as

¨ = ε(0.8773�A − 3.8877h̄2A3 + 0.8897f̄A3

− 12.8564h̄d̄A5 + 0.9712k̄A5 − 9.4429d̄
2
A7) + O(ε

√
ε).

(34)

Note that, after setting D2N+2 = 0, we also have X2. The
olution X2 is provided in Appendix C and is needed for higher
rder calculations.

Eq. (34) is the second order slow flow for ion motion in the
resence of hexapole, octopole, decapole and dodecapole super-
ositions. The presence of ε and Δ in the equation enables us to
isualize ion dynamics at different values of detuning from q∗

z .
n order to compare these results with the beat envelope equa-
ions of Sudakov [22] (where separate equations were presented
or hexapole and octopole superpositions), we plot the time tra-
ectories predicted by these equations. To do this we transform
he coefficients of Eq. (34) to the form of the beat envelope
quations. Details of this comparative study are presented in
ppendix D, where agreement is observed with Sudakov’s re-

ults except for one erroneous numerical coefficient which we
orrect here.

Using this systematic approach we have actually carried out
alculations up to the fourth order, and the final fourth order
low flow equation is given, for completeness, in Appendix A
details are available in Marathe (2006)).2 This equation may be
f use in the presence of somewhat larger weights of multipole
uperpositions. However, in the present study, we will use only
he second order slow flow (Eq. (34)) for generating relevant
hase portraits below.

.4. Numerical verification

We next check the correctness of the slow flow we have ob-
ained. We do this by first integrating Eq. (9) numerically, using
he built-in routine ODE45 from MATLAB, with some chosen
nitial conditions. Numerical tolerances of 10−8 are specified
or the integration routine. Figs. 1–3 show comparisons between

umerically obtained solutions of Eq. (9) and the amplitude ob-
ained by solving the slow flow (Eq. (34)). In these plots we have
elected ε = 0.001, and the initial conditions for integration of
q. (9) were taken as x(0) = 0.01 and ẋ(0) = 0. We obtain the

2 A. Marathe, PhD Thesis, Indian Institute of Science, in preparation.

F
t
ε

h

A

ig. 1. Comparison of amplitude (A) determined by solving the slow flow with
he original Mathieu equation (x) for positive and negative octopole. In both plots,
= 0.001, x(0) = 0.01, ẋ(0) = 0, A(0) = 0.0091, Ȧ(0) = 0 and h̄ = d̄ = k̄ =
. Further, we use for (a) f̄ = 1, Δ = −1; for (b) f̄ = −1, Δ = 1.

orresponding initial conditions for the slow flow (Eq. (34)) by
method described in Appendix E. The values of parameters

sed are given in the respective figure captions. For the purpose
f comparison of the two equations for a specific nonlinearity,
he weights of the other superpositions are set to 0 in both Eqs.
9) and (34).

Fig. 1(a) presents the results for positive octopole and
ig. 1(b) for negative octopole. From the figure, a good match
an be seen between the full numerical solution and MMS ap-
roximation. Fig. 2(a) and (b) show results for hexapole and
ecapole superpositions where the effect of nonlinearity is sign
ndependent. Fig. 3(a) shows the comparison for positive dode-
ig. 2. Comparison of amplitude (A) determined by solving the slow flow with
he original Mathieu equation (x) for hexapole and decapole. In both plots,
= 0.001, Δ = 1, x(0) = 0.01, ẋ(0) = 0 and f̄ = k̄ = 0. Further, we use for (a)

¯ = 1, d̄ = 0, A(0) = 0.0091, Ȧ(0) = 0; for (b) d̄ = 1, h̄ = 0, A(0) = 0.0101,
˙ (0) = 0.
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Fig. 3. Comparison of amplitude (A) determined by solving the slow flow with
the original Mathieu equation (x) for positive and negative dodecapole. In both
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Table 2
qz at different values of Δ, for ε = 0.001

Δ qz

−2.0 0.9060463
−1.0 0.9070463
−0.5 0.9075463
−0.1 0.9079463
−0.001 0.9080453

0.25 0.9082963
0.6 0.9086463
1.0 0.9090463
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fixed points are ±0.1572, ±0.0703, and ±0.00703, respectively.

From Fig. 4(a)–(d), it can also be observed that the area of
the region around the center where the solution is bounded di-
minishes as Δ is varied from −2 to −0.001, and ions with initial
lots, ε = 0.001, x(0) = 0.01, ẋ(0) = 0, A(0) = 0.0091, Ȧ(0) = 0 and h̄ = f̄ =
¯ = 0. Further, we use for (a) k̄ = 1, Δ = −1; for (b) k̄ = −1, Δ = 1.

. Results and discussion

Eq. (34) is the second order slow flow which describes varia-
ion in amplitude of ion motion in the presence of hexapole,
ctopole, decapole and dodecapole multipole superpositions.
hile the octopole (f̄ ) and decapole (k̄) appear as linear terms,

he hexapole (h̄) and decapole (d̄) appear independently as
uadratic terms as well as in combination in one of the terms.
his last observation, namely that of h̄ and d̄ appearing as a com-
ination, has two interesting consequences. First, the sign of the
exapole will affect dynamics only if decapole superposition is
lso present. Second, for the sign of hexapole superposition to
ffect ion dynamics its sign change must be independent of de-
apole superposition. These consequences are also borne out by
he fourth order slow flow which includes a larger number of
erms (see Appendix A and the caveats therein).

We now return to our original problem of understanding
on dynamics in the presence of field inhomogeneities. The
onlinearities considered here are hexapole, octopole, decapole
nd dodecapole. This study will rely on interpreting numerically
enerated phase portraits, obtained from the slow flow (Eq.
34)), at different values of Δ. In the phase portraits presented,
e have varied Δ from −2 to +8, and the corresponding qz

alues are presented in Table 2 for ready reference. These
z values are calculated by substituting q∗

z = 0.908046 and
= 0.001 in Eq. (8). All the phase portraits are generated
eeping the value of ε at 0.001. The slow flow equations are
ntegrated repeatedly for a large number of initial conditions
nd the phase portraits are obtained by plotting the derivative of
he amplitude (Ȧ) on the y-axis and amplitude (A) on the x-axis.

Although in real traps the field has more than one higher order
ultipole superposition, for the sake of clarity of the discussion

e study the effect of each multipole superposition individually.
he effect of combinations of multipoles may be evaluated by
suitable choice of terms in the slow flow equation (Eq. (34))

nd will not be explicitly discussed in this paper.
F
v

2.0 0.9100463
8.0 0.9160463

.1. Positive octopole

We set h̄ = d̄ = k̄ = 0 in Eq. (34) to study the effect of oc-
opole superpositions. The right hand side of Eq. (34) is a cubic
olynomial in amplitude A. The roots of this polynomial are

−0.9940
√

−Δ/f̄ , 0), (0, 0) and (0.9940
√

−Δ/f̄ , 0).

These, if real, are also the fixed points of the slow flow. Since
¯ is positive, for positive values of Δ, there exists only one
xed point at (0,0) and this is a saddle, indicating that the ion is
nstable. For negative Δ values, however, there are three fixed
oints. For instance, for f = 0.01 (i.e., f̄ = 20 for ε = 0.001)
nd Δ = −2, these fixed points occur at A = 0, A = ±0.3143.
he two nonzero fixed points are now saddles and consequently

ons will be stable only near the origin (a center) where the so-
ution is bounded. As we vary Δ from −2 towards 0 (that is,
owards the stability boundary), the nonzero fixed points move
owards each other. This can be observed from Fig. 4(a)–(d)
hich show the phase portraits generated by numerically inte-
rating Eq. (34). For Δ = −0.5, −0.1, and −0.001, the nonzero
ig. 4. Phase portrait for 1% octopole (f = 0.01, f̄ = 20, ε = 0.001) for Δ

alues of (a) −2, (b) −0.5, (c) −0.1 and (d) −0.001.
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conditions which would earlier have been stable now are un-
stable and escape to infinity. For Δ values very close to 0, but
less than 0, the area in the phase space where the solution is
bounded is so small that all ions with significant energies es-
cape. The phase portraits present qualitatively a similar picture
to Sudakov’s [22] observation that for positive octopole there
is a potential well within the stable region and the width and
depth of this well decreases as qz approaches the boundary. In
the context of our study, the central region in the phase portrait
(with closed curves) corresponds to the potential well discussed
by Sudakov [22].

4.2. Negative octopole

We now consider the ion dynamics in the neighborhood of
the stability boundary with 1% negative octopole nonlinearity.
Since f̄ is negative, for negative values of Δ, Eq. (34) will have
only one fixed point. This will be a center and hence the ion
will be stable. For positive values of Δ (i.e., beyond the nominal
stability boundary), there exist three fixed points consisting of
a saddle and two centers (one on each side of the saddle). As Δ

is increased to values greater than 0, these centers move away
from each other. The centers for Δ = 2 are at A = ±0.3143 and
for Δ = 8 are at A = ±0.6287.

Fig. 5(a)–(d) shows the phase portraits generated by numer-
ically integrating Eq. (34) for Δ values corresponding to −1,
0, 2 and 8, respectively, for 1% negative octopole nonlinearity.
Referring to Fig. 5(a) and (b), there exists only one fixed point
and this is a center. All ions which were originally located near
the trap center will continue to execute stable oscillations and
will not escape from the trap. When the qz value of the ion is
increased beyond q∗

z (where Δ is positive), the phase portrait
qualitatively changes its nature. As can be seen from Fig. 5(c)
and (d), the origin which was earlier a center now becomes a sad-
dle and two new centers are created. Thus an ion will oscillate
in a path (in averaged or slow phase space) that encircle either
one of the centers, or both centers. For very small positive val-
ues of Δ, ion amplitude does not exceed the trap boundary and

Fig. 5. Phase portrait for −1% octopole (f = 0.01, f̄ = 20, ε = 0.001) for Δ

values of (a) −1, (b) 0, (c) 2 and (d) 8.

ions are therefore confined within the trap cavity. Increasing the
detuning parameter Δ increases the maximum amplitude that
an ion oscillation encircling a center can have. Eventually, for
large enough Δ, ion motion amplitudes exceed the trap dimen-
sions, and so the ion gets ejected (also see numerical simulation
of this phenomenon in Sudakov [22]). Thus, in the presence of
negative octopole superposition, ion oscillations continue to be
inherently stable well beyond q∗

z and ion escapes from the trap
only when amplitude reaches the trap boundary.

Here too, our results are consistent with Sudakov’s [22] obser-
vation of a double well potential function for negative octopole
superposition. The regions around the two centers (with closed
curves) on either side of the saddle, observed for positive val-
ues of Δ, correspond to the double well potential shown in that
study.

4.3. Hexapole

The effect of hexapole superposition can be studied by setting
f̄ = d̄ = k̄ = 0 in Eq. (34). It is observed that the hexapole non-
linearity parameter h̄ appears in squared form which implies that
the sign of hexapole nonlinearity will not affect the slow flow.
This is in agreement with the simulation studies of Franzen et
al. [36].

The roots of the polynomial obtained by equating the right
hand side of Eq. (34) to 0 are:

(−0.4750
√

Δ/h̄2, 0), (0, 0) and (0.4750
√

Δ/h̄2, 0).

For negative values of Δ there will be only one fixed point at
(0, 0) and this will be a center. When Δ takes positive values,
similar to the case of negative octopole nonlinearity, two centers
and a saddle will appear.

Fig. 6(a)–(d) shows the phase portraits for 1% positive
hexapole superposition (i.e., h̄ = 0.47 for ε = 0.001) for Δ

values −1, 0, 0.25 and 0.6, respectively. As can be seen from
these figures, we get the same qualitative behavior as we
obtained in case of the negative octopole nonlinearity, for both
negative and positive values of Δ. This observation can also be

Fig. 6. Phase portrait for 1% hexapole (h = 0.01, h̄ = 0.47, ε = 0.001) for Δ

values of (a) −1, (b) 0, (c) 0.25 and (d) 0.6.
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to Δ = 1 and Δ = 8, respectively, show that the nonzero fixed
points are centers and the origin is a saddle. Ions are ejected
from the trap when the ion oscillation amplitude reaches the
trap boundary.
ig. 7. Phase portrait for 1% decapole (d = 0.01, d̄ = 0.79, ε = 0.001) for Δ

alues (a) −1, (b) 0, (c) 0.25 and (d) 2.

nderstood from Eq. (34) where the qualitative behavior of the
low flow for the hexapole nonlinearity (in the absence of all
thers) will become similar to the slow flow for the negative
ctopole nonlinearity (in the absence of all others).

Notice, however that h̄d̄ appears in the slow flow, so sign
ndependence is violated when multiple multipoles are present.

oreover, at the fourth order (see Appendix A) this symmetry
s further lost due to the simultaneous presence of h̄d̄ as well as
¯ 2d̄ (but see the caveats presented therein).

.4. Decapole

To study the effect of decapole superposition we set h̄ = f̄ =
¯ = 0 in Eq. (34). The slow flow equation reduces to:

.8773�A − 9.4429d̄
2
A7 = 0. (35)

ig. 7(a)–(d) show the phase portraits for 1% decapole super-
osition (i.e., d̄ = 0.79 for ε = 0.001). The phase portraits are
ualitatively similar to the phase portraits obtained for hexapole
uperposition. As in the case of hexapole, delayed ejection is
uggested by these phase portraits. The fixed point of the sys-
em when Δ is negative is (0,0). In this case the system exhibits
table oscillations. For positive values of Δ there will be three
xed points. For Δ = 0.25 these are (−0.5778, 0), (0, 0) and
0.5778, 0). From the phase portraits it can be observed that ori-
in of the A–Ȧ plane is a saddle and the nonzero fixed points
re centers. As Δ is increased to 2, the two nonzero fixed points
ove further apart to (±0.7857, 0). Ions are ejected from the

rap when their amplitudes reach the trap boundary.

.5. Positive dodecapole

The influence of dodecapole nonlinearity may be investigated
y setting h̄ = f̄ = d̄ = 0 in Eq. (34). The slow flow reduces to
.8773�A − 0.9712k̄A5 = 0. (36)

The system represented by this equation has three fixed points
hen Δ is negative and k̄ is positive. The phase portraits for

F
Δ

ig. 8. Phase portrait for 1% dodecapole (k = 0.01, k̄ = 30, ε = 0.001) for Δ

alues of (a) −0.5, (b) −0.1, (c) −0.01 and (d) −0.001.

% dodecapole superposition (i.e., k̄ = 30 for ε = 0.001) are
hown in Fig. 8(a)–(d). When Δ = −0.5 the fixed points are
−0.3503, 0), (0,0) and (0.3503,0). The two nonzero fixed points
re saddles and the origin is a center. As Δ is increased (that is,
henqz approachesq∗

z ) the two nonzero fixed points move closer
o the origin. From Fig. 8(d) corresponding to Δ = −0.001, the
enter is almost gone and almost all initial conditions lead to
nbounded solutions (ejection).

.6. Negative dodecapole

When k̄ is negative there exists only one fixed point at (0,0) for
egative values of Δ. From Fig. 9(a), which is plotted for −1%
odecapole superposition at Δ = −1, it can be seen that the
ystem exhibits stable oscillations. However, for positive values
f Δ there are three fixed points. Fig. 9(c) and (d) corresponding
ig. 9. Phase portrait for −1% dodecapole (k = 0.01, k̄ = 30, ε = 0.001) for
values of (a) −1, (b) 0, (c) 1 and (d) 8.
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. Concluding remarks

The motivation of this paper was to understand the dynam-
cs associated with early and delayed ejection of ions in Paul
raps operated in the mass selective ejection mode. The studies
eported in this paper will be of use in understanding dynamics
t the stability boundary in all traps where the nonlinear Math-
eu equation determines ion stability. Examples of mass analyzer
onfigurations which are attracting considerable interest include
he 2D (linear) Paul trap and the cylindrical trap, in addition to
he hyperboloid geometry Paul trap.

The equation of motion of ions in the axial direction of the
rap with hexapole, octopole, decapole and dodecapole superpo-
itions was studied using the method of multiple scales. The or-
ering scheme used has allowed a systematic inclusion of higher
rder multipoles. Details of the analysis have been provided and
ur results are compared with those of Sudakov [22]. Although
fourth order slow flow equation has been computed and re-

orted for potential future use in traps with larger weights of
ultipole superpositions, in our present study we have used the

econd order slow flow (Eq. (34)) for generating phase portraits.

hase portraits generated by numerical integration of the slow
ow have been used to predict the qualitative behavior of ion
otion near the stability boundary in the presence of nonlin-

arities. The presence of positive even multipoles was seen to
ause early ejection and negative even multipoles to cause de-
ayed ejection of ions. Independently present odd multipoles of
ither sign have the same effect as negative even multipoles in
ausing delayed ejection.

While our present study has served to reinforce conclusions
rrived at by earlier workers who focussed on the influence of
eld inhomogeneities causing delayed ejection in mass selective
oundary ejection experiments, it offers a few new insights.

First, we now have a better understanding on the role of
exapole superposition, specifically to the way in which its sign
s important in discussion of ion dynamics at the boundary. To
e-iterate our observation, the common perception is that the
ynamics is unaffected if h̄ changes sign. We report that the
ynamics is unaffected if h̄ and d̄ change sign simultaneously
ut not otherwise (assuming both h̄ and d̄ are nonzero). Further-
ore, when d̄ = 0, the sign-independence of the dynamics on

¯ holds up to even the next order in the analysis (going beyond
ranzen et al. [36]).

¨ = ε(−12.8564h̄d̄A5 − 9.44304d̄
2
A7 − 3.88769h̄2A3 + 0.97

− 5.50581f̄ Ȧ2A + 657.373d̄
2
Ȧ2A5 − 20.2091k̄Ȧ2A3 +

− 1892.91d̄
4
A13 + 290.186h̄f̄ d̄A7 + 493.157h̄d̄ k̄A9 + 3

+ 151.374h̄2k̄A7 − 7.64328d̄ k̄A7 + 23.3241Δh̄2A3 + 78

− 1.76775Δd̄A3 − 4394.78h̄d̄
3
A11 − 3.843405Δk̄A5 + 1
A second important contribution that the present study makes
s to trap designers. As mentioned in our introductory remarks in
his paper, newer trap geometries are under current investigation
nd their design optimization is performed either empirically or

v
a
c
T
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hrough numerical simulations. These techniques do not lend
hemselves to easily summarizing the effects of a large number
f possible parameter variations. Considering that calculation
f multipole contribution to the field within the trap cavity for
specified trap geometry is fairly routine and straightforward,

nserting the weights of multipole superpositions for these ge-
metries in the slow flow will enable easy visualization of ion
ynamics at different qz values in the neighborhood of the nomi-
al stability boundary. This will help designers in understanding
he effects of specific combinations of multipole superpositions
n mass analyzers being investigated by them for use in mass
elective boundary ejection experiments.
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ppendix A. Fourth order MMS slow flow

The slow flow equation after carrying out the fourth order
ultiple scales analysis will be in the form:

k̄A5 + 0.87729�A + 0.88965f̄A3 + 39.31546h̄2Ȧ2A

774h̄d̄Ȧ2A3) + ε2 (−0.18369Δ2A − 125.986h̄4A5

77d̄
2
k̄A11 − 1176.36h̄3d̄A7 − 3572.55h̄2d̄

2
A9

5h̄2d̄A5 + 251.73f̄ d̄
2
A9 + 133.2125Δd̄

2
A7

76Δh̄d̄A5 − 2.60912d̄
2
A5 − 5.22277k̄2A9) (A.1)

Note that higher order MMS gives non-unique results (due
o arbitrariness in the choice of X1 in Eq. (23)). Moreover, due
o harmonic balance approximations, the numerical coefficients
bove are not exact. However, the spirit of the calculation is
orrect in principle and a useful approximation is obtained, and
o these terms are reported here for record.

ppendix B. Choice of time scales in MMS

Time scales chosen in the MMS when applied to Eq. (9) are
0 = τ, T1 = √

ετ, T2 = ετ, . . .. Our choice is based on the
ollowing.

We consider:

d2x

dτ2 + 2(q∗
z + εΔ) cos(2τ)(x + εx3) = 0, (B.1)

hich can be rewritten as

d2x

dτ2 + 2q∗
z cos(2τ)x + 2ε cos(2τ)(q∗

zx
3 + �x) + O(ε2) = 0.

(B.2)

We numerically integrate Eq. (B.2), neglecting O(ε2) terms,
ith initial conditions x(0) = 0.01 and ẋ(0) = 0 for a fixed

alue of ε = 0.001. We observe the period of the slowly varying
mplitude to be T = 433.25 (Fig. B.1(a)). With the same initial
onditions, we integrate Eq. (B.2) again, but now for ε = 0.002.
his time period of the solution is observed to be T = 306.35.
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Fig. B.1. Time period of the amplitude for (a) ε = 0.001 and (b) ε = 0.002.

ote that 433.25/306.35 ≈ 1.414 . . . ≈ √
2. The solution

or ε = 0.002 is therefore plotted against
√

2τ instead of τ

nd we get approximately the same period, i.e., T ≈ 433.25
Fig. B.1(b)). This observation suggests that the

√
ετ time scale

s present in the solution. We support our observation further
sing an analogy. The unperturbed equation in case of Eq. (9) is

d2x

dτ2 + 2q∗
z cos(2τ)x = 0. (B.3)

This equation is a linear Mathieu equation with q∗
z value cor-

esponding to q at the stability boundary. Eq. (B.3) has two
inearly independent solutions, one periodic with constant am-
litude and the other with amplitude growing linearly with time.

Now consider

d2x = 0. (B.4)

dτ2

It is a second order, linear homogeneous ordinary differential
quation. It has two linearly independent solutions, one constant
nd the other linearly growing with respect to time, similar at
Mass Spectrometry 261 (2007) 170–182

n abstract level to the behavior of the amplitude for the linear
athieu equation. If we perturb Eq. (B.4) as

d2x

dτ2 + εx = 0, (B.5)

he solution becomes

= A cos(
√

ε τ) + B sin(
√

ε τ), (B.6)

here A and B depend upon the initial conditions. We see that
ime scale

√
ετ is present in the solution.

Eq. (9) is a perturbation to Eq. (B.3). So we expect time scales
,
√

ετ, ετ, . . . to be present in the solution. The final MMS
pproximation, of course, is amply supported by full numerical
hecks.

ppendix C. Expressions for X1 and X2

The solution for X1 (not displaying the coefficients which are
ess than 10−5) is:

1 ≈ −1.13522
∂A

∂T1
sin T0 − 0.18287

∂A

∂T1
sin(3T0)

− 0.00812
∂A

∂T1
sin(5T0) − 0.00017

∂A

∂T1
sin(7T0)

− 0.60164h̄A2 cos(2 T0) − 0.6719d̄A4 cos(2T0)

+ 0.00066h̄A2 cos(4T0) + 0.00455d̄A4 cos(4T0)

+ 0.00268h̄A2 cos(6T0) + 0.0078d̄A4 cos(6T0)

+ 0.00016, h̄A2 cos(8T0) + 0.00116d̄A4 cos(8T0)

+ 0.00011d̄A4 cos(10T0) − 2.07004d̄A4 − 1.88307h̄A2

(C.1)

The solution for X2 (not displaying the coefficients which are
ess than 10−5) is:

2 ≈ 1.1332h̄A
∂A

∂T1
sin(2T0) + 2.46062d̄A3 ∂A

∂T1
sin(2T0)

− 0.00693h̄A
∂A

∂T1
sin(4T0) + 0.03699d̄A3 ∂A

∂T1
sin(4T0)

− 0.00963h̄A
∂A

∂T1
sin(6T0) − 0.03737d̄A3 ∂A

∂T1
sin(6T0)

− 0.00066h̄A
∂A

∂T1
sin(8T0) − 0.00662d̄A3 ∂A

∂T1
sin(8T0)

− 0.00002h̄A
∂A

∂T1
sin(10T0) −0.00073d̄A3 ∂A

∂T1
sin(10T0)

− 0.00006d̄A3 ∂A

∂T1
sin(12T0) + 0.14628�A cos(3T0)

− 0.02631h̄2A3 cos(3T0) − 0.00325f̄A3 cos(3T0)
− 0.00009f̄A5 cos(3T0) − 0.00195h̄d̄A5 cos(3T0)

+ 0.02946d̄
2
A7 cos(3T0) + 0.00187�A cos(5T0)

− 0.02469h̄2A3 cos(5T0) + 0.01234f̄A3 cos(5T0)
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a book-keeping parameter in that study (the correspondence be-
tween Sudakov’s ε and ours is therefore not direct, and is avoided
in this discussion), we can write u ≈ Zu1, and therefore A ≈
(z0/r0)(u1/ξ1)Z. Finally, substituting f̄ = (2/ε)(r2

0/z
2
0)α4, Δ =

−(q0 − q)/ε and A ≈ (z0/r0)(u1/ξ1)Z into Eq. (D.4), we
obtain:

d2Z

dξ2 + 0.8873(q0 − q)Z − 1.7794

(
u1

ξ1

)2

α4Z
3 = 0. (D.5)

From Eq. (10) of Sudakov [22], it can be seen that u1 is
scaled such that all coefficients in the solution add to 1. In our
study, we have not imposed this condition on ξ1 and we have
obtained, instead, u1/ξ1 = 0.90495. Substituting this, Eq. (D.5)
then becomes:

d2Z

dξ2 + 0.8873(q0 − q)Z − 1.4572α4Z
3 = 0 (D.6)

Comparing Eq. (D.3) and Eq. (D.6) indicates that, for octopole
superposition, the beat envelope equation and the slow flow are
identical.

We next investigate the two equations (ours, and Sudakov’s)
for the case of hexapole superposition. Eq. (B.6) in Sudakov [22]
which represents the beat envelope for hexapole superposition
is:

d2Z

dξ2 + 0.8873(q0 − q)Z + 12.692α2
3Z

3 = 0. (D.7)

Following the procedure adopted for octopole nonlinearity
and substituting h̄ = (3/2

√
ε)(r0/z0) in the slow flow, Eq. (34)

with only hexapole superposition can be transformed to:

d2Z

dξ2 + 0.8873(q0 − q)Z + 7.1693α2
3Z

3 = 0. (D.8)

It is observed that the coefficient of α2
3Z

3 in Eqs. (D.7) and
(D.8) differ significantly. We now verify the correctness of the
coefficients by comparing the solutions of the two equations
with the solution of the original equation (Eq. (B.1)) in Sudakov
N. Rajanbabu et al. / International Journ

− 0.15887h̄d̄A5 cos(5T0) + 0.01857f̄A5 cos(5T0)

− 0.1447d̄
2
A7 cos(5T0) + 0.00007�A cos(7T0)

− 0.00159h̄2A3 cos(7T0) + 0.00186f̄A3 cos(7T0)

− 0.02564h̄d̄A5 cos(7T0) + 0.00456f̄A5 cos(7T0)

− 0.02621d̄
2
A7 cos(7T0) − 0.00001h̄2A3 cos(9T0)

+ 0.00015f̄A3 cos(9T0) − 0.00231h̄d̄A5 cos(9T0)

− 0.000728f̄A5 cos(9T0) − 0.00246d̄
2
A7 cos(9T0)

− 0.00013h̄d̄A5 cos(11T0) + 0.00009f̄A5 cos(11T0)

− 0.00011d̄
2
A7 cos(11T0) (C.2)

X1 and X2 are provided here with numerical coefficients of
heir terms truncated to five decimal places. In our calculations
sing MAPLE, more digits were retained.

ppendix D. Comparison of second order slow flow
ith beat envelope equation of Sudakov [22]

We reproduce Sudakov’s equation of ion motion (Eq. (9) in
ef. [22]) below:

d2u

dξ2 + 2q0 cos(2ξ)u

= 2(q0 − q) cos(2ξ)u − q cos(2ξ)4α4u
3, (D.1)

here u = z/z0, ξ = Ωt/2 (= τ, in our study), q0 = q∗
z (in our

tudy), α4 = f (z2
0/r2

0) (= ε(f̄ /2)(z2
0/r2

0), in our study). The so-
ution to Eq. (D.1) is assumed to be of the form (Eq. (A.1) in
udakov [22]):

(ξ) = εZu1(ξ) + ε2(h1 sin(ξ) + h3 sin(3ξ) + . . .)

+ ε3(g3 cos(3ξ) + g5 cos(5ξ) + . . .), (D.2)

here Z is the beat envelope (our “amplitude”) and u1 is the
eriodic solution of the linear Mathieu equation at the stability
oundary and hk’s and gk’s are slowly varying amplitudes of the
armonics.

The beat envelope equation has been found by Sudakov [22]
o be

d2Z

dξ2 + 0.8873(q0 − q)Z − 1.4572α4Z
3 = 0. (D.3)

However, the slow flow equation (Eq. (34)) derived by us,
hen there is only octopole nonlinearity, has the form:

¨ = ε(0.8773�A + 0.8897f̄A3). (D.4)

We must now transform our equation, Eq. (D.4), to the form
resented by Sudakov [22]. This will require transforming dif-
erent parameters in our equation to conform to Eq. (D.3). This
s described below.

We nondimensionalized the axial position variable z as x =

/r0; since u = z/z0, we have x = (z0/r0)u. Since x = X0 +
(
√

ε) = Aξ1 + O(
√

ε), we write x ≈ Aξ1, i.e., (z0/r0)u ≈
ξ1. Sudakov shows in Appendix A of Ref. [22] that his hk’s

nd gk’s are of the first and second orders, respectively. Since ε is

Fig. D.1. Comparison between amplitude obtained by (Eq. (D.8)) and Eq. (D.7)
for α3 = 0.02828 (4% hexapole), q = q0 = 0.908046, u(0) = 0.01, u̇(0) =
0, Z(0) = 0.01, Ż(0) = 0.
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22] with hexapole superposition, which is:

d2u

dξ2 + 2q cos(2ξ)u = −q cos(2ξ)3α3u
2. (D.9)

These equations are integrated using the ODE45 routine of
ATLAB with tolerance values of 10−10. The amplitude ob-

ained from the transformed slow flow (Eq. (D.8)), shown as a
eavy line in Fig. D.1, follows the solution of Eq. (D.1) very
losely, while the amplitude from the beat envelope equation of
udakov [22], Eq. (D.7), shown as a dash line in Fig. D.1, shows
n error in the numerical term reported in Sudakov [22].

ppendix E. Initial condition calculation

We describe a procedure to obtain initial conditions for Eq.
34), correct up to O(

√
ε), from the initial conditions used to

ntegrate Eq. (9).
We assume X(0) = X0(0). Since X0 = A(T1) ξ1(T0), we

ave:

0(0) = A(T1) ξ1(0).

From the expression for X0 obtained from MAPLE, we have
1(0) = 1.105. Therefore, the initial condition for A is:

(0) = X0(0)

1.105
+ O(

√
ε) = X(0)

1.105
+ O(

√
ε).

We also have

˙ (0) = Ẋ0(0) + √
ε Ẋ1(0) + O(ε)

= ξ1(0)Ȧ(0) + √
ε

∂X1

∂T0
+ O(ε). (E.1)

From our solution (MAPLE), we have

∂X1

∂T0
= −1.7244

∂A

∂T1
.

Substituting the above in Eq. (34), we get

˙ (0) = Ẋ(0)

−0.6193
+ O(ε).

Note that some small errors remain for nonzero ε, in light of
hich some small adjustments in initial conditions are allowed

o obtain better fits.
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